

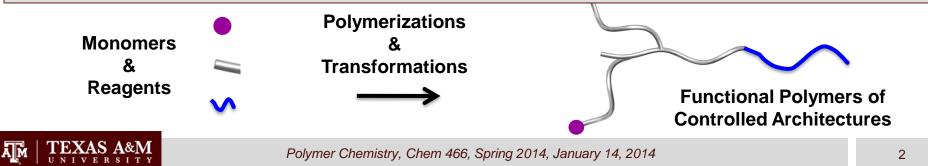
Lecture 1: General Introduction to Polymers

Karen L. Wooley

Departments of Chemistry & Chemical Engineering Texas A&M University

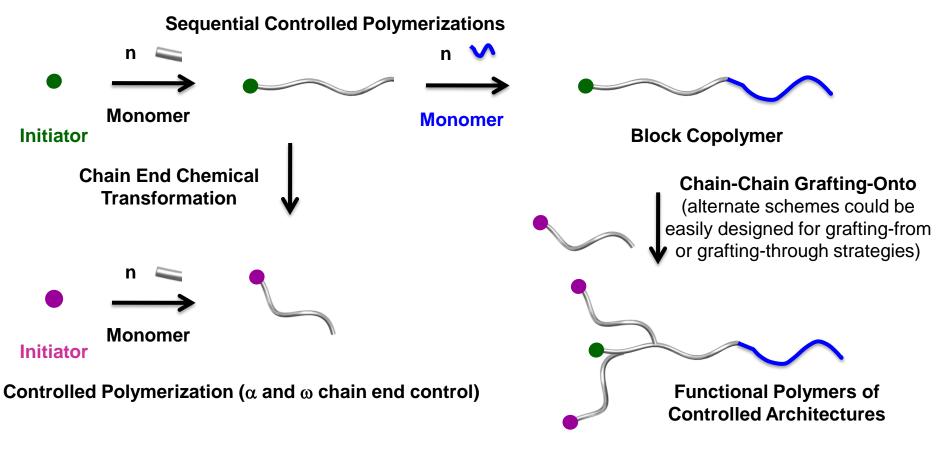
- Synthetic *vs.* retrosynthetic analyses
- Polymers and polymerizations
- Covalent vs. supramolecular polymers
- > Controlled properties *via* controlled macromolecular architectures
- Consideration of "cradle-to-grave"

Sophisticated Plastics



The Uniqueness and Importance of Polymers

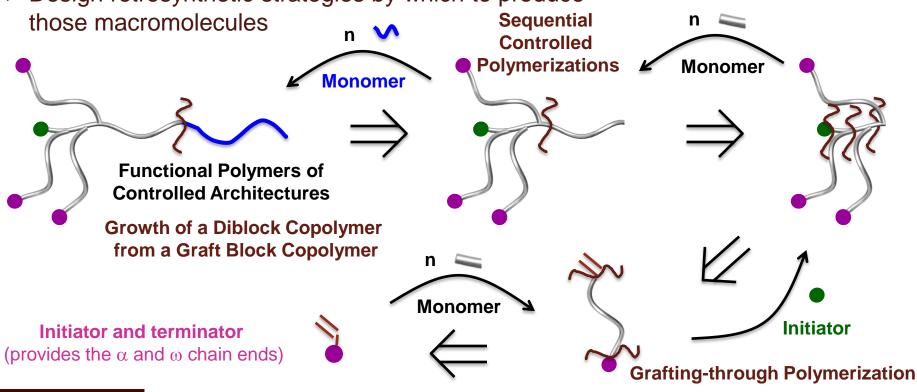
For development of macroscopic to nanoscopic devices—motivated by applications but driven by fundamentals:


- Develop synthetic strategies
- Incorporate functions (pollutant clean-up, diagnostics, therapeutics, anti-fouling, etc.)
- Conduct rigorous characterization and test performance

Synthetic Analysis of Increasingly Complex Macromolecular Structures

Synthetic Approach:

- Develop chemistries to make polymers
- Characterize their properties (provides important structure-property information)
- Determine practical applications



Retrosynthetic Analysis of Increasingly Complex Macromolecular Structures

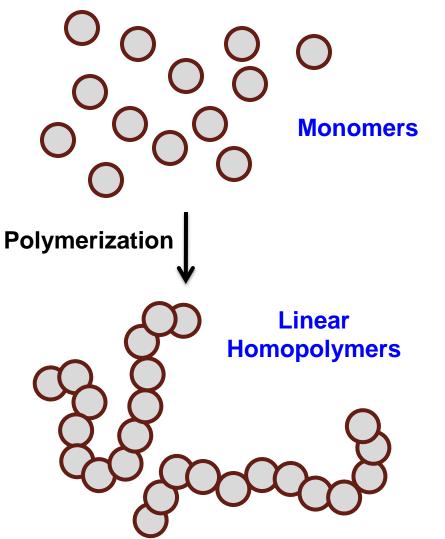
Retrosynthetic Approach:

- Identify desired physical, chemical and mechanical properties
- Design macromolecules that are expected to possess those properties (knowledge of structure-property relationships is critical)
- Design retrosynthetic strategies by which to produce those macromolecules

Polymer Chemistry, Chem 466, Spring 2014, January 14, 2014

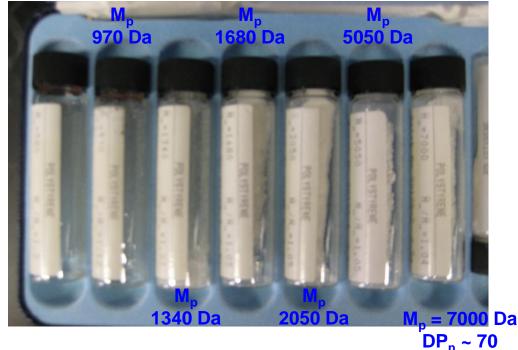
Direct Synthetic vs. Retrosynthetic Approaches to the Preparation of Increasingly Complex Macromolecular Structures

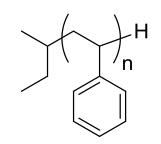
Direct Synthetic Approach:


- Develop chemistries to make polymers
- Characterize their properties (provides important structure-property information)
- Determine practical applications

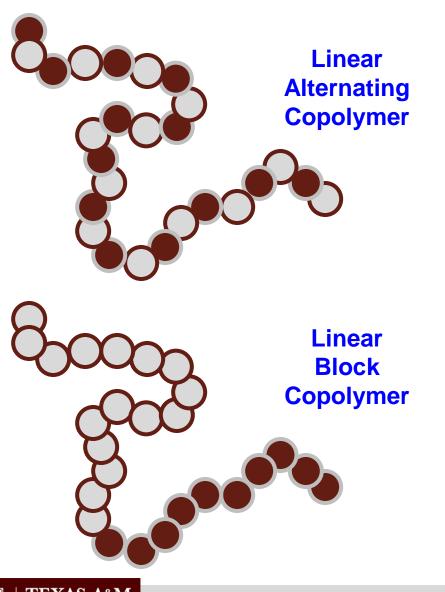
Retrosynthetic Approach:

- Identify desired physical, chemical and mechanical properties
- Design macromolecules that are expected to possess those properties (knowledge of structure-property relationships is critical)
- Design retro-synthetic strategies by which to produce those macromolecules


Both strategies are important to polymer / materials chemistry


- "Polymers" = "Many mers" (many repeat units)
- Monomers are often small molecules (otherwise "macromonomer")
- Polymerization links together many copies of monomers
- For covalent polymers, polymerization involves a transition from weak intermolecular interactions to strong intramolecular bonding

 $M_p = 580 \text{ Da} = \text{peak molecular weight}$ DP_n ~ 6 = number-average degree of polymerization (by size exclusion chromatography, *e.g.*) Viscous oil


Ā M

- Growth of polymer chains results in changes in physical properties
- Demo: Beads in flasks
- Example: Increasing oligomeric to polymeric styrene chain lengths (increasing n)

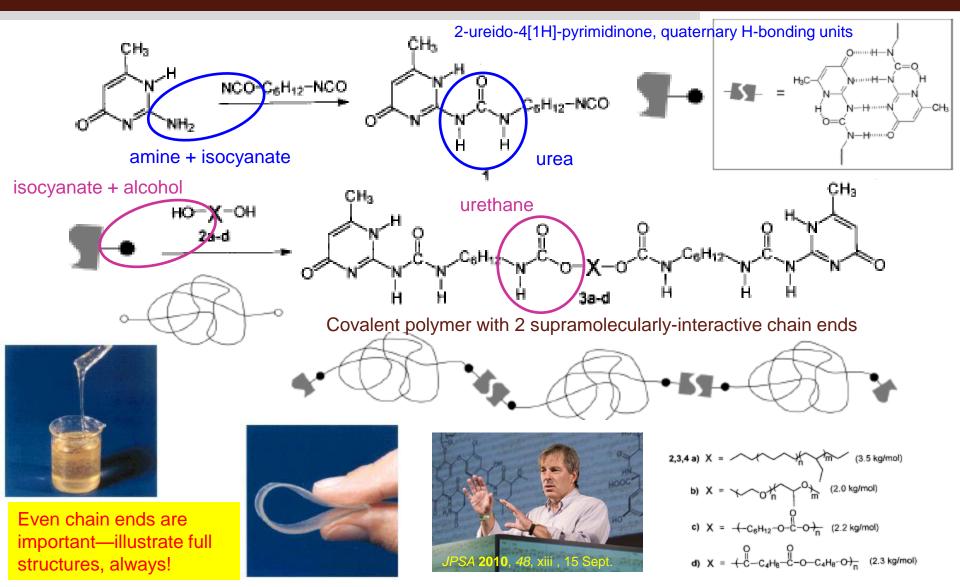
Glassy material/powder

Copolymers can also be formed

- Statistical (random) copolymers
- Alternating copolymers
- Block copolymers
- Gradient copolymers
- The properties can be quite different for each type
 - Monomer compositions
 - Intramolecular characteristics
 - Intermolecular interactions

Covalent vs. Supramolecular—Staudinger

Figure 1. Hermann Staudinger in 1964 in his Freiburg study—a year before his death.


Hermann Staudinger (1881-1965) 1953, Nobel Prize in Chemistry, "for his discoveries in the field of macromolecular chemistry"; confirmation of their existence as covalent chain molecules *vs.* colloidal systems or aggregates of smaller molecules

H. Ringsdorf, "Hermann Staudinger and the Future of Polymer Research Jubilees— Beloved occasions for cultural piety", *Angew. Chem.* **2004**, *43*, 1064-1076.

Polymer Chemistry, Chem 466, Spring 2014, January 14, 2014

Covalent and Supramolecular—Meijer

B. J. B. Folmer, R. P. Sijbesma, R. M. Versteegen, J. A. J. van der Rijt, E. W. Meijer Adv. Mater. 2000, 12, 874-878.

Polymer Chemistry, Chem 466, Spring 2014, January 14, 2014

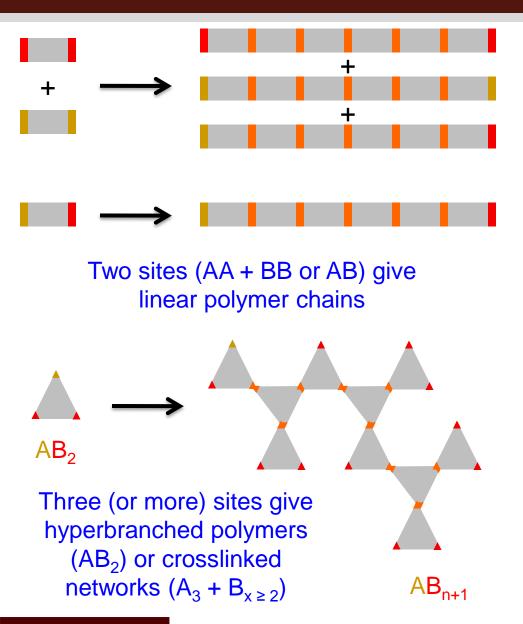
Covalent and Supramolecular Interactions

Covalent Polymers:

- Robust materials
- Linkages can be cleaved selectively (degradable polymers)
- Molecular weight
- Molecular weight distribution
- Architecture (topology)
- Composition

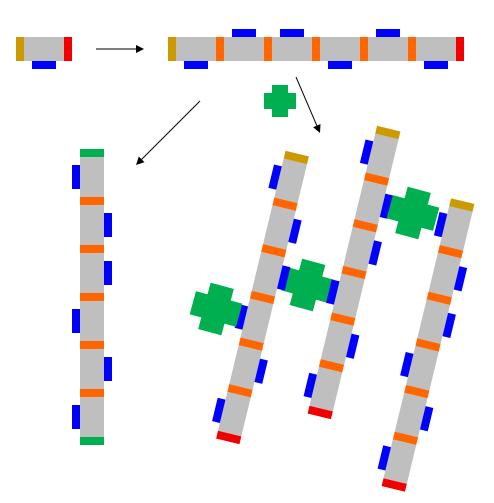
Supramolecular Polymers:

- > Dynamic systems
- Reversible assembly/disassembly
- Molecular weight
- Molecular weight distribution
- Architecture (topology)
- Composition


Each parameter is important to the properties

Each parameter is important to the properties

- In covalent polymers, intermolecular interactions are also important
- In supramolecular polymers, covalent connections within building blocks are also important
- Combinations provide excellent directions for tuning of materials properties, and each must be considered when designing polymer structures


Polymers and Polymerizations—Architecture

The number of complementary reactive sites and geometry of monomer determine macromolecular structure

Macromolecular architecture affects greatly the physical and mechanical properties

- Remaining reactive sites allow for post-polymerization modifications at chain ends or along the backbone
- Orthogonal chemistries can be used (e.g., E. W. Meijer's supramolecular polymer system (vide supra)—orthogonal chemistries to modify the chain ends and promote H-bonding supramolecular polymerizations of macromonomers)
- Chemical functionalization
- Crosslinking
- Unique architectures (*e.g.*, linear-dendritic hybrids)

Consideration of Cradle-to-Grave

- Consider mechanisms for deconstruction of polymers after they have served their function
 - Recycling
 - Bioresorption

Polystyrene

- Stable C-C backbone; linear polymer structure allows for dissolution (of intact polymer chains) in solvents
- Solubility has led to alternatives to degradation, *e.g.* Hearon, K.; *et al.* "A High-performance Recycling Solution for Polystyrene Achieved by the Synthesis of Renewable Poly(thioether) Networks Derived from D-Limonene", *Adv. Mater.*, in press, DOI: 10.1002/adma.201304370.

Poly(ethylene terephthalate)

- Reactive ester backbone linkages; can be broken by hydrolysis, alcoholysis, etc.
- Degradation viable, e.g. Fukushima, K.; et al. "Organocatalytic Depolymerization of Poly(ethylene terephthalate)", J. Polym. Sci., Part A: Polym. Chem. 2011, 49, 1273-1281.

Supramolecular polymers

Weak intermolecular interactions can be broken temporarily and reversibly for reprocessing/recycling, e.g., Folmer, B. J. B.; et al. "Supramolecular Polymer Materials: Chain extension of telechelic polymers using a reactive hydrogen-bonding synthon", *Adv. Mater.* 2000, *12*, 874-878.

